Appstock SDK iOS - Overview

Appstock SDK is a native library that monetizes iOS applications. The latest SDK version is 1.1.1.
The minimum deployment target is i0S 12.0.

Demo applications (Swift, ObjC): https://public-sdk.al-ad.com/ios/appstock-demo/demo-app-1.1.1/demo-
app-1.1.1.zip

Integration and configuration

Follow the integration instructions to add the SDK to your app. Once the SDK is integrated, you can
provide configuration options that will help increase your revenue. Keep in mind that the SDK supports
basic consent providers according to industry standards.

Appstock SDK supports the following ad formats:
e Banner (HTML or Video)
o Interstitial (HTML and Video)
e Rewarded (HTML and Video)
o Native
The SDK can be integrated directly into your app or via supported Mediation Adapters:

e AppLovin MAX

¢ GMA SDK (AdMob, GAM)

e TopOn

e ironSource

Appstock SDK iOS - Integration

Appstock SDK is available for integration via CocoaPods dependency manager and direct download of the
compiled framework.

Cocoapods

We assume the CocoaPods dependency manager has already been integrated into the project. If not,
follow the “Get Started” instructions on cocoapods.org.

Add this line into your Podfile within the application target:

Thenrun pod install --repo-update .

Direct download

The Appstock SDK is also available via a direct download link: https://public-sdk.al-ad.com/ios/appstock-

https://cocoapods.org/

sdk/1.1.1/AppstockSDK.xcframework.zip

SDK Initialization

Import the Appstock SDK core class in the main application class:
import AppstockSDK

Initialize Appstock SDK inthe application:didFinishLaunchingWithOptions method by calling
Appstock.initializeSDK () method.

Swift

func application(application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?

Appstock.initializeSDK(with: PARTNER KEY)

Objective-C

- (BOOL)application: (UIApplication *)application

didFinishLaunchingWithOptions: (NSDictionary<UIApplicationLaunchOptionsKey, id> *)lat
// Initialize SDK SDK.
[Appstock initializeSDKWithPartnerKey:PARTNER KEY];
return YES;

The Appstock.initializeSdk() method has a parameter:

« partnerKey - determine the Appstock server URL. The Appstock account manager should provide
you with this key.

It is recommended that contextual information be provided after initialization to enrich the ad requests. For
this purpose, use SDK parametrization properties.

Once SDK is initialized and all needed parameters are provided, it is ready to request the ads.

Appstock SDK iOS - Banner

To load a banner ad, create a AppstockAdvView object, configure it, add it to the view hierarchy, and
callits loadad() method.

Swift

private var adView: AppstockAdView!

private func loadAd()

eate AppstockAdVie

adView = AppstockAdView (

frame: CGRect (origin: .zero, size: CGSize (width: 300, height: 250)

figur th Appst <A

adView.placementID = placementID
adView.delegate = self

stock ad view t £} -

containerAdView.addSubview (adView)

adView.loadAd ()
Objective-C
@property (nonatomic) AppstockAdView * adView;
- (void) loadAd {
// 1. Create a AppstockAdView
self.adView = [[AppstockAdView alloc] initWithFrame:CGRectMake (0, 0, 300, 250)],
// 2. Configure the AppstockAdView
self.adView.placementID = self.placementID;

self.adView.delegate = self;

// Add Appstock ad view to the app UI

[self.containerAdView addSubview:self.adView];

// 3. Load the ad
[self.adView loadAd];

The AppstockAdview should be provided with one of the required configuration properties:
« placementID - unique placement identifier generated on the Appstock platform’s Ul;
« endpointID - unique endpoint identifier generated on the Appstock platform’s Ul.

Which one to use depends on your type of Appstock account.

You should also provide CGRect value for ad view to initialize UIView .

If you need to integrate video ads, you can also use the AppstockAdview objectinthe same way as
for banner ads. The single required change is you should explicitly set the ad format via the respective
property:

Swift
adView.adFormat = .video
Objective-C

self.adView.adFormat = AppstockAdFormat.video;

Once it is done, the TeqBlzae SDK will make ad requests for video placement and render the respective
creatives.

You can optionally subscribe to the ad’s lifecycle events by implementing the
AppstockAdViewDelegate protocol:

Swift
extension BannerAdViewController: AppstockAdViewDelegate {

func adViewPresentationController () -> UIViewController? {

func adview(adView: AppstockAdvView, didFailToReceiveAdWith error: any Error)

/ Called when SDK failed to load ad
// Called when SDK failed to load ad

print ("Did fail to receive ad with error: \(error.localizedDescription)")

func adview(_adView: AppstockAdView, didReceiveAdWithAdSize adSize: CGSize, ad

// C loac

d when

func advViewWillPresentModal (adView: AppstockAdView) {

is abou

func adviewWillLeaveApplication(_ adView: AppstockAdView) {

ut to enter the

application is

Objective-C

@interface AppstockBannerAdViewController : UIViewController <AppstockAdViewDelegat
@end
//
- (UIViewController *)adViewPresentationController {
// View controller used by SDK for presenting modal.
// Usual implementation may simply return self,

// 1f it is view controller class.
return self;

- (void)adview: (AppstockAdView *)adView didFailToReceiveAdWith:
(NSError *)error {
// Called when Appstock SDK failed to load ad

NSLog (@"Did fail to receive ad with error: %@", error.localizedDescription);

- (void)adView: (AppstockAdView *)adView
didReceiveAdWithAdSize: (CGSize)adSize adInfo: (AppstockAdInfo *)adInfo {
// Called when ad is loaded

- (void)advViewWillPresentModal: (AppstockAdView *)adView {
// Called when modal is about to be presented

- (void)advViewDidDismissModal: (AppstockAdView *)adView {
// Called when modal is dismissed

- (void)adviewWillLeaveApplication: (AppstockAdView *)adView {
// Called when the application is about to enter the background

Once the ad is loaded you can utilize it's basic properties inspecting AppstockAdInfo structure. Currently
AppstockSDK provides the ad price and later this object will be extended.

The refreshInterval property controls the frequency of automatic ad refreshes. This interval is set
in seconds and dictates how often a new ad request is made after the current ad is displayed.

Swift
adView.refreshInterval = 3
Objective-C
adView.refreshInterval = 30.0;

You can stop auto refresh by calling respective method:

Swift
adView.stopAutoRefresh ()

Objective-C

[adView stopAutoRefresh];

You can also set adPosition property to specify the position of the ad on the screen and

corresponding value will be sentin bidRequest.imp[].banner.pos ORTB field during bid request.

Swift
adView.adPosition = .footer
Objective-C

adView.adPostion = AppstockAdPositionFooter;

Appstock SDK iOS - Interstitial

To load interstitial ads, you should create and configure the AppstockInterstitialAdUnit
its loadAd() method.

Swift
private var interstitialAdUnit: AppstockInterstitialAdUnit!

private func loadAd()

interstitialAdUnit = AppstockInterstitialAdUnit ()

interstitialAdUnit.placementID = placementID
interstitialAdUnit.delegate = self

interstitialAdUnit.loadAd ()

Objective-C
@property (nonatomic) AppstockInterstitialAdUnit * interstitialAdUnit;

- (void)loadAd {
// 1. Create a AppstockInterstitialAdUnit
self.interstitialAdUnit = [[AppstockInterstitialAdUnit alloc] init];

// 2. Configure the AppstockInterstitialAdUnit
self.interstitialAdUnit.placementID = self.placementID;
self.interstitialAdUnit.delegate = self;

// 3. Load the interstitial ad
[self.interstitialAdUnit loadAd];

and call

If you need to integrate video ads or multiformat ads, you should set the adFormats property to the

respective value:

Swift

interstitialAdUnit.

interstitialAdUnit.

interstitialAdUnit.

Objective-C

// Make ad request

interstitialAdUnit.

// Make ad request

interstitialAdUnit.

// Make ad request

interstitialAdUnit.

adFormats = [.video]

for 1 h 1d nd bann r ads (defaul behaviour

adFormats = [.video, .banner]

adFormats = [.banner]

for video ad
adFormats = [NSSet setWithArray:Q@[AppstockAdFormat.video]];

for both video and banner ads (default behaviour)
adFormats = [NSSet setWithArray:@[AppstockAdFormat.video, Appstoc

for banner ad
adFormats = [NSSet setWithArray:Q[AppstockAdFormat.banner]];

You can check if the ad is ready to be shown by calling respective property:

Swift

if interstitialAdUnit.isReady {

Objective-C

if (interstitialAdUnit.isReady) {

Once the ad is loaded, you can invoke the show () method at any appropriate point of the app flow to
present the fullscreen ad. To know when the ad is loaded, you should implement
AppstockInterstitialAdUnitDelegate protocol and subscribe to the ad events in its methods.

When the delegate’s method interstitialDidReceiveAd is called, it means that the SDK has
successfully loaded the ad. Starting from this point, you can call the show () method to display the full-

screen ad.

The ad’s basic properties can be accessed through the AppstockAdInfo structure once the ad has been
loaded. Currently AppstockSDK provides the ad price and later this object will be extended.

Swift

extension AppstockBannerInterstitialViewController:
AppstockInterstitialAdUnitDelegate {

func interstitialDidReceiveAd(interstitial: AppstockInterstitialAdUnit, adInf

// Called when ad is loaded

// Show the full screen ad
if interstitialAdUnit.isReady {
interstitial.show (from: self)

func interstitial (
_ interstitial: AppstockInterstitialAdUnit,

didFailToReceiveAdWithError error: (any Error)?

// Called when Appstock SDK failed to load ad
print ("Did fail to receive ad with error:

\ (String (describing: error?.localizedDescription))"™)

func interstitialWillPresentAd(interstitial: AppstockInterstitialAdUnit) ({

// Called when interstitial is about to be presented

func interstitialDidDismissAd(_ interstitial: AppstockInterstitialAdUnit)
{

// Called when interstitial is dismissed

func interstitialDidClickAd(interstitial: AppstockInterstitialAdUnit) ({

// Called when interstitial was clicked

func interstitialWilllLeaveApplication(_ interstitial:
AppstockInterstitialAdUnit) {

// Called when the application is about to enter the background

Objective-C

@interface AppstockBannerInterstitialViewController : UIViewController <AppstockInt

@end

//

- (void)interstitial: (AppstockInterstitialAdUnit *)interstitial didFailToReceiveAdW:
// Called when Appstock SDK failed to load ad

NSLog (@"Did fail to receive ad with error: %Q@", error.localizedDescription);

- (void)interstitialDidReceiveAd: (AppstockInterstitialAdUnit *)interstitial adInfo:
// Called when ad is loaded
[interstitial showFrom:self];

- (void)interstitialWillPresentAd: (AppstockInterstitialAdUnit *)interstitial ({
// Called when interstitial is about to be presented

- (void)interstitialDidDismissAd: (AppstockInterstitialAdUnit *)interstitial {

// Called when interstitial is dismissed

- (void)interstitialDidClickAd: (AppstockInterstitialAdUnit *)interstitial ({
// Called when interstitial was clicked

- (void)interstitialWillLeaveApplication: (AppstockInterstitialAdUnit *)interstitial

// Called when the application is about to enter the background

Rendering Controls

The following properties enable rendering customization of video interstitial ads.

Property

isMuted

closeButtonArea

closeButtonPosition

skipButtonArea

skipButtonPosition

skipDelay

Description

This option lets you switch the sound on or off during playback. Default is

false

This setting determines the percentage of the device screen that the close
button should cover. Allowed range - 0...1 . Defaultvalueis 0.1

This setting controls where the close button appears on the screen. Allowed
values: topleft , topRight . Other values will be ignored. Default is
topRight

This setting determines the percentage of the device screen that the skip
button should cover. Allowed range - 0...1 . Default valueis 0.1

This control sets the position of the skip button. Allowed values:
topLeft , topRight . Other values will be ignored. Default is
topLeft .

This setting determines the number of seconds after the start of playback
before the skip or close button should appear. Default value is 10.0

Property

isSoundButtonVisible

Usage example:

Swift

interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.

interstitialAdUnit

interstitialAdUnit.

Objective-C

interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.
interstitialAdUnit.

Description

This option switches on or off the visibility of the sound/mute button for
users. Default value is false

isMuted = true

closeButtonArea = 0.2
closeButtonPosition = .topRight
skipButtonArea = 0.2
skipButtonPosition = .topLeft
.skipDelay = 15.0
isSoundButtonVisible = true

isMuted = YES;

closeButtonArea = 0.2;

closeButtonPosition = AppstockPositionTopRight;
skipButtonArea = 0.2;

skipButtonPosition = AppstockPositionTopLeft;
skipDelay = 15.0;

isSoundButtonVisible = YES;

Appstock SDK iOS - Rewarded

To load rewarded ads, you should create and configure the AppstockRewardedAdUnit

loadAd () method.

Swift

private var rewardedAdUnit:

and call its

AppstockRewardedAdUnit!

private func loadAd()

JAdL

rewardedAdUnit = AppstockRewardedAdUnit ()

rewardedAdUnit.placementID = placementID

AppstockRewardedA

rewardedAdUnit.delegate = self

rewardedAdUnit.

Objective-C

loadAd ()

@property (nonatomic) AppstockRewardedAdUnit * rewardedAdUnit;

- (void) loadAd {
// 1. Create a AppstockRewardedAdUnit
self.rewardedAdUnit = [[AppstockRewardedAdUnit alloc] init];

// 2. Configure the AppstockRewardedAdUnit
self.rewardedAdUnit.placementID = self.placementID;
self.rewardedAdUnit.delegate = self;

// 3. Load the rewarded ad
[self.rewardedAdUnit loadAd];

If you need to integrate video ads or multiformat ads, you should set the adFormats property to the
respective value:

Swift
rewardedAdUnit.adFormats = [.video]
ke ad request for [k ! de and banner ads (defaul behaviour)
rewardedAdUnit.adFormats = [.video, .banner]
rewardedAdUnit.adFormats = [.banner]
Objective-C

// Make ad request for video ad
rewardedAdUnit.adFormats = [NSSet setWithArray:@[AppstockAdFormat.video]];

// Make ad request for both video and banner ads (default behaviour)
rewardedAdUnit.adFormats = [NSSet setWithArray:@[AppstockAdFormat.video, AppstockAd]

// Make ad request for banner ad

rewardedAdUnit.adFormats = [NSSet setWithArray:@[AppstockAdFormat.banner]];
You can check if the ad is ready to be shown by calling respective property:
Swift

if rewardedAdUnit.isReady {

}
Objective-C

if (rewardedAdUnit.isReady) {

Once the ad is loaded, you can invoke the show () method at any appropriate point of the app flow to
present the fullscreen ad. To know when the ad is loaded, you should implement
AppstockRewardedAdUnitDelegate protocol and subscribe to the ad events in its methods.

When the delegate’s method rewardedAdDidReceiveAd is called, it means that the SDK has

successfully loaded the ad. Starting from this point, you can call the show () method to display the full-
screen ad.

The ad’s basic properties can be accessed through the AppstockAdInfo structure once the ad has been
loaded. Currently AppstockSDK provides the ad price and later this object will be extended.

Swift

extension AppstockBannerRewardedViewController:
AppstockRewardedAdUnitDelegate {

func rewardedAdDidReceiveAd (rewardedAd: AppstockRewardedAdUnit, adInfo: Appst

if rewardedAd.isReady {
rewardedAd. show (from: self)

func rewardedAd (
_ rewardedAd: AppstockRewardedAdUnit,
didFailToReceiveAdWithError error: Error?

/ led when Appstock | to load ad

print ("Did fail to receive ad with error:

\ (String (describing: error?.localizedDescription))")

func rewardedAdWillPresentAd(_ rewardedAd: AppstockRewardedAdUnit) {

func rewardedAdDidDismissAd(rewardedAd: AppstockRewardedAdUnit) {

led ad is di

1 rew

func rewardedAdDidClickAd(_ rewardedAd: {

// led when] ad was c

func rewardedAdWillLeaveApplication(_ rewardedAd: AppstockRewardedAdUnit) {

e

> appl

func rewardedAdUserDidEarnReward (_ rewardedAd: AppstockRewardedAdUnit, reward:

// Called when

Objective-C

@interface AppstockBannerRewardedViewController : UIViewController <AppstockRewarde
@end

//

- (void) rewardedAdDidReceiveAd: (AppstockRewardedAdUnit *)rewardedAd adInfo: (Appstoc

// Called when ad is loaded

[rewardedAd showFrom:self];

- (void) rewardedAd: (AppstockRewardedAdUnit *)rewardedAd didFailToReceiveAdWithError
// Called when Appstock SDK failed to load ad
NSLog (@"Did fail to receive ad with error: %Q@", error.localizedDescription);

- (void) rewardedAdWillPresentAd: (AppstockRewardedAdUnit *)rewardedAd ({
// Called when rewarded ad is about to be presented

- (void) rewardedAdDidDismissAd: (AppstockRewardedAdUnit *)rewardedAd {
// Called when rewarded ad is dismissed

- (void) rewardedAdDidClickAd: (AppstockRewardedAdUnit *)rewardedAd ({
// Called when rewarded ad was clicked

- (void) rewardedAdWillLeaveApplication: (AppstockRewardedAdUnit *)rewardedAd {
// Called when the application is about to enter the background

- (void) rewardedAdUserDidEarnReward: (AppstockRewardedAdUnit *)rewardedAd reward: (Aprg
// Called when the reward was granted to user

Rendering Controls

The following properties enable rendering customization of video rewarded ads.

Property Description

This option lets you switch the sound on or off during playback. Default is

isMuted
false
This setting determines the percentage of the device screen that the close
closeButtonArea .
button should cover. Allowed range - 0...1 . Defaultvalueis 0.1
This setting controls where the close button appears on the screen. Allowed
closeButtonPosition values: topLeft , topRight . Other values will be ignored. Default is
topRight
. . This option switches on or off the visibility of the sound/mute button for
isSoundButtonVisible

users. Default value is false .

Usage example:

Swift

rewardedAdUnit.isMuted = true
rewardedAdUnit.closeButtonArea = 0.2
rewardedAdUnit.closeButtonPosition = .topRight
rewardedAdUnit.isSoundButtonVisible = true

Objective-C
rewardedAdUnit.isMuted = YES;
rewardedAdUnit.closeButtonArea = 0.2;

rewardedAdUnit.closeButtonPosition = AppstockPositionTopRight;
rewardedAdUnit.isSoundButtonVisible = YES;

Appstock SDK iOS - Native

To load a native ad, you should initialize and configure AppstockNativeAdUnit object and call the
loadAd () method.

Swift

private var nativeAdUnit: AppstockNativeAdUnit!
private var nativeAd: AppstockNativeAd?

private func loadAd() {

nativeAdUnit = AppstockNativeAdUnit ()

nativeAdUnit.placementID = placementID

let image = AppstockNativeAssetImage (minimumWidth:

minimumHeight: 50, required: true)

image.type = .Main

let icon = AppstockNativeAssetImage (minimumWidth: 20,
minimumHeight: 20, required: true)

icon.type = .Icon

let title = AppstockNativeAssetTitle (length: 90, required: true)
let body = AppstockNativeAssetData (type: .description, required: true)
let cta = AppstockNativeAssetData (type: .ctatext, required: true)

let sponsored = AppstockNativeAssetData (type: .sponsored, required: true)

let parameters = AppstockNativeParameters ()

parameters.assets = [title, icon, image, sponsored, body, cta]

let eventTracker = AppstockNativeEventTracker (

event: .Impression,

methods: [.Image, .Jjs]
)
parameters.eventtrackers = [eventTracker]
parameters.context = .Social
parameters.placementType = .FeedContent
parameters.contextSubType = .Social

nativeAdUnit.parameters = parameters

nativeAdUnit.loadAd { [weak self] ad, error in
guard let self = self else {
return

guard let ad = ad, error == nil else {

return

self.nativeAd = ad
self.nativeAd?.delegate = self

/ 3. the n 7
self.titlelLabel.text = ad.title
self.bodyLabel.text = ad.text
self.sponsoredLabel.text = ad.sponsoredBy

self.mainImageView.setImage (from: ad.imageUrl, p
laceholder: UIImage (systemName: "photo.artframe"))
self.iconView.setImage (from: ad.iconUrl,
placeholder: UIImage (systemName: "photo.artframe"))

self.callToActionButton.setTitle(ad.callToAction, for: .normal)

self.nativeAd?.registerView (view: self.view,
clickableViews: [self.callToActionButton])

bid.

or on abo

e o role

/) Uz

print ("Bid price: \(String(describing: nativeAd?.adInfo?.price))")

Objective-C

@property (nonatomic) AppstockNativeAdUnit * nativeAdUnit;
@property (nonatomic, nullable) AppstockNativeAd * nativeAd;

- (void)loadad {
// 1. Create a AppstockNativeAdUnit
self.nativeAdUnit = [[AppstockNativeAdUnit alloc] init];

// 2. Configure the AppstockNativeAdUnit
self.nativeAdUnit.placementID = self.placementID;

AppstockNativeAssetImage *image = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:200
minimumHeight:200
required:true

1
image.type = AppstockImageAsset.Main;

AppstockNativeAssetImage *icon = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:20
minimumHeight:20
required:true

17
icon.type = AppstockImageAsset.Icon;

AppstockNativeAssetTitle *title = [
[AppstockNativeAssetTitle alloc]
initWithLength:90

P TV

Leyulleu.: LLue

17

AppstockNativeAssetData *body = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetDescription
required:true

17

AppstockNativeAssetData *cta = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetCtatext
required:true

17

AppstockNativeAssetData *sponsored = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetSponsored
required:true

1

AppstockNativeParameters * parameters = [AppstockNativeParameters new];

parameters.assets = @[title, icon, image, sponsored, body, ctal;

AppstockNativeEventTracker * eventTracker = [
[AppstockNativeEventTracker alloc]
initWithEvent:AppstockEventType.Impression
methods: @ [AppstockEventTracking.Image, AppstockEventTracking.js]

17

parameters.eventtrackers = Q@[eventTracker];
parameters.context = AppstockContextType.Social;
parameters.placementType = AppstockPlacementType.FeedContent;
parameters.contextSubType = AppstockContextSubType.Social;

self.nativeAdUnit.parameters = parameters;

__weak typeof (self) weakSelf = self;
[self.nativeAdUnit loadAdWithCompletion:” (AppstockNativeAd * Nullable ad, NSEr
if (error != nil || ad == nil) {

return;

weakSelf.nativeAd = ad;
weakSelf.nativeAd.delegate = self;

weakSelf.titleLabel.text = ad.title;
weakSelf.bodyLabel.text = ad.text;
weakSelf.sponsoredLabel.text = ad.sponsoredBy;

[weakSelf.mainImageView setImageFromURLString:ad.imageUrl
placeholder: [UIImage systemImageNamed:@"photo.artframe"]];
[weakSelf.iconView setImageFromURLString:ad.iconUrl

placeholder: [UIImage systemImageNamed:@"photo.artframe"]];
[weakSelf.callToActionButton

setTitle:ad.callToAction forState:UIControlStateNormal];

// Use 'AdInfo’ to get information about the received bid.
NSLog (@"Bid price: %@", weakSelf.nativeAd.adInfo.price ?: @" (null)");

You can configure the native assets by settingup parameters property. Here is a brief description of

AppstockNativeParameters :
e assets - an array of assets associated with the native ad.
e eventtrackers - an array of event trackers used for tracking native ad events.
e version -the version of the native parameters. Defaultis "1.2" .
e context -the contexttype for the native ad (e.g., content, social).
e contextSubType -a more detailed context in which the ad appears.
e placementType - the design/format/layout of the ad unit being offered.
e placementCount -the number of identical placements in this layout. Defaultis 1 .

e sequence -the sequence number of the ad in a series. Defaultis 0 .

asseturlsupport - whether the supply source / impression impression supports returning an
assetsurl instead of an asset object. Defaultis 0 (unsupported).

e durlsupport -whether the supply source / impression supports returning a dco url instead of an
asset object. Defaultis 0 (unsupported).

e privacy -setto1when the native ad support buyer-specific privacy notice. Defaultis 0 .
e ext -adictionary to hold any additional data as key-value pairs.

Here is a brief description of available assets:

Class/Enum Type Name Description
A subclass representing a
AppstockNativeAssetTitle Class . . .
title asset in a native ad.
An optional extension for
Property ext .
additional data.
Property length The length of the title.
A subclass representing
AppstockNativeAssetImage Class an image asset in a native
ad.
The type of image asset
Property type : .
(e.g., icon, main image).
Property width The width of the image.
The minimum width of the
Property widthMin .
image.
Property height The height of the image.
The minimum height of the
Property heightMin .
image.
i An array of supported
Property mimes

MIME types for the image.

Class/Enum

AppstockNativeAssetData

AppstockImageAsset

AppstockDataAsset

Type

Property

Class

Property

Property

Property

Class

Property

Property

Property

Enum

Case

Case
Case

Case

Case

Case

Case

Case

Case

Case

Name

ext

length

ext

type

Icon

Main

Custom

sponsored

description

rating

likes

downloads

price

saleprice

phone

address

description2

Description

An optional extension for
additional data.

A subclass representing a
data asset in a native ad.

The length of the data
string.

An optional extension for
additional data.

The type of data asset
(e.g., sponsored,
description).

A class representing
different types of image
assets in the Appstock
SDK.

Represents an icon image
asset.

Represents a main image
asset.

Represents a custom
image asset.

An enum representing
different types of data

assets in the Appstock
SDK.

Represents sponsored
content.

Represents a description.
Represents a rating.
Represents likes.

Represents download
count.

Represents the price.
Represents a sale price.

Represents a phone
number.

Represents an address.

Represents a secondary
description.

Class/Enum

Type Name

Case displayurl
Case ctatext
Case Custom
Method exchangeID

Description

Represents a display
URL.

Represents call-to-action
text.

Represents a custom data
asset.

Returns or sets the
exchange ID for the
Custom case.

You can also specify what type of event tracking is supported. For that you need to set

eventtrackers property. Here is a brief description of available types:

Class/Enum

AppstockNativeEventTracker

AppstockEventType

Type Name

Class

Property event
Property methods
Property ext

Class

Property Impression

Description

A class
representing
event
trackers for
native ads.

The type of
event to be
tracked
(e.9.,
impression,
viewable
impression).

An array of
tracking
methods
used for the
event.

An optional
extension
for
additional
data.

A class
representing
different
event types
that can be
tracked.

Represents
an
impression
event.

Class/Enum Type

Property

Property

Property

Property

AppstockEventTracking Class

Property

Property

Property

Name

ViewableImpression50

ViewableImpressionl00

ViewableVideoImpression50

Custom

Image

js

Custom

Description

Represents
a 50%
viewable
impression
event.

Represents
a 100%
viewable
impression
event.

Represents
a 50%
viewable
video
impression
event.

Represents
a custom
event type.

A class
representing
different
methods of
event
tracking.

Represents
image-
based event
tracking.

Represents

JavaScript-

based event
tracking.

Represents
a custom
tracking
method.

Once the ad is loaded, the SDK provides you with a AppstockNativeAd objectin the callback of the
loadAd () method. This object contains ad assets that you should apply to the native ad layout.

If you need to manage stages of the ad lifecycle you should implement the

AppstockNativeAdDelegate protocol.

The ad’s basic properties can be accessed through the AppstockAdInfo structure once the ad has been
loaded. Currently AppstockSDK provides the ad price and later this object will be extended.

Swift

extension AppstockNativeViewController: AppstockNativeAdDelegate

func adDidExpire (ad: AppstockNativeAd)
func adWasClicked (ad: AppstockNativeAd) ({

func adDidLogImpression(ad: AppstockNativeAd) {

Objective-C
@interface AppstockNativeViewController : UIViewController<AppstockNativeAdDelegate
@end

//

- (void)adDidExpireWithAd: (AppstockNativeAd *)ad {
// Called when the ad expired

- (void)adwWasClickedWithAd: (AppstockNativeAd *)ad {
// Called when the ad was clicked

- (void)adDidLogImpressionWithAd: (AppstockNativeAd *)ad {
// Called when the impression was logged

If you need ORTB native request object, you can use getNativeRequestObject method for that. It
returns a dictionary with request configuration.

Swift
let request = adUnit.getNativeRequestObject ()
Objective-C

NSDictionary * request = [self.nativeAdUnit getNativeRequestObject];

Appstock SDK iOS - SDK Parametrization

Configuration via AppstockTargeting class

The AppstockTargeting class provided a set of properties that allow to enrich the ad request.

Method Description OpenRTB field

Method Description OpenRTB field

Placeholder for exchange-

AppstockTargeting.userExt specific extensions to user.ext
OpenRTB.
AppstockTargeting.userCustomData Set the specific user data user.customdata

Integer flag indicating if this

request is subject to the
AppstockTargeting.subjectToCOPPA COPPA regulations regs.coppa

established by the USA FTC,

where 0 =no, 1 =yes

App store URL for an installed

AppstockTargeting.storeURL app.storeurl
app.

ID of publisher app in Apple’s

AppstockTargeting.sourceapp imp[].ext.skadn.sourceapp
App Store.
AppstockTargeting.publisherName App’s publisher name app.publisher.name
AppstockTargeting.itunesID The app identifier in iTunes. app.bundle
. . Placeholder for User Identity .
AppstockTargeting.eids Link usr.ext.eids
inks

Defines the User Id Object
AppstockTargeting.externalUserlds from an External Thrid Party usr.ext.eids

Source.

Domain of the app (e.g.,

AppstockTargeting.domain app.domain
“mygame.foo.com”).

Location of the user’'s home
user.geo.lat,

AppstockTargeting.coordinate base. This is not necessarily
user.geo.lon

their current location

. Comma-separated list of
AppstockTargeting.addAppKeyword app.keywords
keywords about the app

Usage examples:

Swift

// Set the userExt property

AppstockTargeting.shared.userExt = ["customField": "value"]

// Set the userCustomData property

AppstockTargeting.shared.userCustomData = "{\"key\":\"value\"}"

// Set the subjectToCOPPA property

AppstockTargeting.shared.subjectToCOPPA = true

// Set the storeURL property

AppstockTargeting.shared.storeURL = "https://appstore.com/app"

// Set the sourceapp property

AppstockTargeting.shared.sourceapp = "com.example.app"
// Set the publisherName property
AppstockTargeting.shared.publisherName = "MyPublisher"

// Set the itunesID property

AppstockTargeting.shared.itunesID = "123456789"

// Set the eids property
AppstockTargeting.shared.eids = [["uids":["id": "123"], "source

// Set the externalUserIds property
AppstockTargeting.shared.externalUserIds =
[AppstockExternalUserId (source: "adserver.org", identifier:

"111111111111", ext: ["partner" : "abs"])]

// Set the domain property

AppstockTargeting.shared.domain = "mygame.foo.com"
// Set the coordinate property
AppstockTargeting.shared.coordinate = NSValue (cgCoordinate:

CLLocationCoordinate2D (latitude: 37.7749, longitude: -122.4194))

// Add a keyword
AppstockTargeting.shared.addAppKeyword ("gaming")

Objective-C

"idfa"]]

// Set the userExt property
AppstockTargeting.shared.userExt = @{@"customField": Q@"value"};

// Set the userCustomData property
AppstockTargeting.shared.userCustomData = @"{\"key\":\"value\"}";

// Set the subjectToCOPPA property
AppstockTargeting.shared.subjectToCOPPAObjc = @1;

// Set the storeURL property
AppstockTargeting.shared.storeURL = @"https://appstore.com/app";

// Set the sourceapp property
AppstockTargeting.shared.sourceapp = @"com.example.app";

// Set the publisherName property
AppstockTargeting.shared.publisherName = @"MyPublisher";

// Set the itunesID property
AppstockTargeting.shared.itunesID = @"123456789";

// Set the eids property
AppstockTargeting.shared.eids = Q[Q{Q@"uids": @{@"id": @"123"}, @"source": @"idfa"}],

// Set the externalUserIds property
AppstockTargeting.shared.externalUserIds = Q[[[AppstockExternalUserId
alloc] initWithSource:Q@"adserver.org" identifier:@"111111111111" atype:@1
ext:Q@{@"partner": Q@"abs"}1];

// Set the domain property
AppstockTargeting.shared.domain = @"mygame.foo.com";

// Set the coordinate property
AppstockTargeting.shared.coordinate = [NSValue

valueWithMKCoordinate:CLLocationCoordinate2DMake (37.7749, -122.4194)];

// Add a keyword
[AppstockTargeting.shared addAppKeyword:@"gaming"];

Configuration via Appstock class

Appstock class provides some properties to configure SDK and ad request. Here is a brief overview:

Property/Method Description
Indicates whether the ad request timeout has been
timeoutUpdated
updated.
debugRequests Enables or disables debug mode for requests.
endpointID A unique identifier generated on the platform’s Ul.

Determines whether the asset ID for native ads

shouldAssignNativeAssetID .
should be manually assigned.

Controls whether location data is shared for better
shareGeoLocation
ad targeting.

logLevel Sets the desired verbosity of the logs.

Property/Method

externalUserIdArray

version
omsdkVersion

timeoutMillis

timeoutMillisDynamic

adRequestTimeout

adRequestTimeoutPreRenderContent

initializeSDK (with partnerKey)

Usage examples:

Swift

Description

An array containing objects that hold external user
ID parameters.

Returns the SDK version.
Returns the OM SDK version used by the SDK.
The timeout in milliseconds for ad requests.

The dynamic timeout value set when
timeoutMillis changes.

The time interval allowed for a creative to load
before it is considered a failure.

The time interval allowed for video and interstitial
creatives to load.

Initializes the Appstock SDK with the provided
partner key.

// Setting the timeoutUpdated flag
Appstock.shared. timeoutUpdated = true

// Enabling debug logging

Appstock.shared.debugRequests = true

// Setting the endpoint ID

Appstock.shared.endpointID = "12345"

// Managing the asset ID for native ads

Appstock.shared. shouldAssignNativeAssetID = true

// Sharing location data for targeted ads
Appstock.shared.shareGeoLocation = true
// Set the log level to debug
Appstock.shared.logLevel = .debug

n

// Adding an external user ID
Appstock.shared.externalUserIdArray = [AppstockExternalUserId (
source: "adserver.org", identifier: "111111111111",

ext: ["partner" : "abs"])]

// Accessing the SDK versior

let sdkVersion = Appstock.shared.version

// Accessing OM SDK ve

on

let omVersion = Appstock.shared.omsdkVersion

// Setting the timeout for ad
s

]

equests

Appstock.shared.timeoutMillis = 5000

// Adjusting the creative load time

Appstock.shared.adRequestTimeout = 8.0

// Adjusting the pre-rendered content load time

Appstock.shared.adRequestTimeoutPreRenderContent = 20.0

// Initializing

Appstock.initializeSDK(with: "partner-key")

Objective-C

// Setting the timeoutUpdated flag
Appstock.shared. timeoutUpdated = YES;

// Enabling debug logging
Appstock.shared.debugRequests = YES;

// Setting the endpoint ID
Appstock.shared.endpointID = @"12345";

// Managing the asset ID for native ads
Appstock.shared.shouldAssignNativeAssetID = YES;

// Sharing location data for targeted ads
Appstock.shared.shareGeoLocation = YES;

// Setting the log level to debug
Appstock.shared.loglLevel = APSLogLevel.debug;

// Adding an external user ID

Appstock.shared.externalUserIdArray = @[[[AppstockExternalUserId alloc]
initWithSource:@"adserver.org" identifier:@"111111111111" atype:Q1
ext:@{@"partner": @"abs"}]11];

// Accessing the SDK version
NSString *sdkVersion = Appstock.shared.version;

// Accessing the OM SDK version
NSString *omVersion = Appstock.shared.omsdkVersion;

// Setting the timeout for ad requests
Appstock.shared.timeoutMillis = 5000;

// Adjusting the creative load time
Appstock.shared.adRequestTimeout = 8.0;

// Adjusting the pre-rendered content load time
Appstock.shared.adRequestTimeoutPreRenderContent = 20.0;

// Initializing the SDK
[Appstock initializeSDKWith:@"partner-key"];

Appstock SDK iOS - Consent Management

Appstock SDK reads consent data provided by CMPs from User Settings and sends it in the ad request.
You shouldn’t do anything except to be sure that the CMP SDKs write data into particular place in the user
storage defined by the IAB standards. The following table describes which data is used by SDK and how
exactly:

Storage Key Description

TCE v2

https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/blob/master/TCFv2/IAB%20Tech%20Lab%20-%20CMP%20API%20v2.md

Storage Key Description

Number:
1 GDPR applies in current
context
IABTCF gdprApplies 0 - GDPR does not apply in regs.ext.gdpr
current context
Unset - undetermined (default
before initialization)

IABTCF TCString String: Full encoded TC string user.ext.consent

Binary String: The ‘0’ or 1’ at
position n — where n’s indexing
begins at 0 — indicates the
IABTCF PurposeConsents consent status for purpose ID
n+1; false and true
respectively. eg. ‘1’ at index O
is consent true for purpose ID 1

Defines the ability of SDK to
collect device info.

String: Aligns with IAB
; i OpenRTB CCPA Advisory. :
IABUSPrivacy String . . regs.ext.us privacy
- The String encodes all choices -

and information.
GPP

Full consent string in its
IABGPP HDR GppString regs.gpp
- encoded form
Section ID(s) considered to be
in force. Multiple IDs are
IABGPP GppSID regs.gpp sid
- separated by underscore, -

e.g.2. 3

Appstock SDK iOS - Mediation - AdMob

In order to integrate Appstock AdMob Adapter into your app, add the following lines to your Podfile:

ockSDK', '1.1.1"

pod 'GoogleMobileAdsAppstockAdapter', '1.1.1'

Warning: The GADMobileAds.sharedInstance () .start() should be called in the adapters
bundle, otherwise, GMA SDK won't load the ads with error:

SDK tried to perform a networking task before being initialized.
To avoid the error add the following line to your app right after initialization of GMA SDK:
AppstockGADMediationAdapterInitializer.start ()

In order to add Appstock to the waterfall, you need to create a custom event in your AdMob account and
then add this event to the respective mediation groups.

https://github.com/InteractiveAdvertisingBureau/USPrivacy/blob/master/CCPA/USP%20API.md
https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform/blob/main/Core/CMP%20API%20Specification.md

To create a Appstock custom event, follow the instructions:

1. Sign in to your AdMob account at https://apps.admob.com.

2. Click Mediation in the sidebar.

o
=0

@

L0)
e
(2]
[+]

C) Google AdMob

Home
Apps
Reports

Mediation /

Campaigns

Policy centre
Privacy & messaging
Blocking controls
Payments

Change history BeTa
Settings New

Help

Feedback

3. Click the Waterfall sources tab.

Mediation

Mediation groups

Set up ad source

Bidding sources

4. Click Custom Event.

Mediation

Mediation groups

Set up ad source

Filter ~ Add filter

Bidding sources

Applovin

Waterfall
Waterfall

Custom Event

Waterfall

Ad unit mapping

Custom Event

Waterfall sources

Waterfall sources

5. Find your app in the list and click on it to expand.

Custom Event
Waterfall

View
View
View
05 [y view v
6. Click Add mapping.
Test App View A

os o View

Free | iOS

No ad units have been mapped yet

sy Add mapping

7. Click Add mapping. To include multiple custom events, you’ll need to set up additional mappings.

https://support.google.com/admob/answer/13395411#manage

Edit ad unit mapping

Custom Event
Waterfall

Test App

i0s .. |i0S

ca-app-pub-2844566227051243~1997399649

AdMob ad unit Custom Event /

Test Banner

7 Banner Add mapping

Show rows 10v‘ 1-10f1

Cancel

8. Add the mapping details, including a mapping name. Enter a class name (required) and a parameter
(optional) for each ad unit. Typically, the optional parameter contains a JSON that contains IDs
(placement ID, endpoint ID) that will be used by the custom event to load ads.

Parameters:

placement_id - unique identifier generated on the platform’s Ul;

endpoint_id - unique identifier generated on the platform’s Ul;

o sizes - array of the ad sizes. You can specify widthin w field and heightin h field. Make sure
you’ve provided both width and height values;

ad_formats - array of the ad formats. You can pass only banner and video ad formats. Other
values will be ignored. Note that the multiformat request is supported only for interstitial ads.

"placement id": “47”,

"sizes": [
{
"w": 729,
"h": 90
}
1,
"ad formats": ["video"]
}
{
"endpoint id": "1",
"sizes": [
{
"w": 320,
"h": 50
I
{
"w": 300,
"h": 250

by
1,

"ad_formats": ["banner"]

Test Banner

\/ Banner

9. Click Save.

Test Banner
Banner

Mapping name Class Name

(Test Banner " AppstockGADMediationAdapter w
P; (optional)

({"placement_id":"4"} l

Add mapping

Show rows | 10 ~ 1-90f9

Cancel

Mapping name Class Name
(Test Banner "AppstockGADMediationAdapter W

(optional)
({"placement_id":"4"} \

Add mapping

Show rows 1-90f9

After you've finished setting up your custom event, you'’re ready to add it to a mediation group. To add your

ad source to an existing mediation group:

1. Sign in to your AdMob account at https://apps.admob.com.

2. Click Mediation in the sidebar.

f

ao

g O

©)

3o &

C. Google AdMob

Home
Apps
Reports

Mediation /

Campaigns

Policy centre
Privacy & messaging
Blocking controls
Payments

Change history seta
Settings New

Help

Feedback

3. In the Mediation group tab, click the name of the mediation group to which you’re adding the ad
source.

Mediation

Mediation groups Bidding sources Waterfall sources

@ Test 27 ® - — No A/Btest v

0O 000 o0oo0oooooo oo
o

AdMob (default) ® - — No A/Btest
Show rows 1-40 of 40
4. In the Waterfall ad sources table, click Add custom event.
Waterfall @ /
Add ad source Add custom event
Status Ad source Order (by eCPM) @ Ad unit mapping @ Optimisation status

No waterfall ad sources have been added

5. Enter a descriptive label for the event. Enter a manual eCPM to use for this custom event. The eCPM
will be used to dynamically position the event in the mediation waterfall where it will compete with
other ad sources to fill ad requests.

Add custom event

Label @

TestCustomEvent

15/ 255

Manual eCPM ($ USD)

@ Enter a manual eCPM for this custom event. The eCPM
determines the order of the ad source to serve ads.

Cancel Continue

6. Click Continue.

Add custom event

Label ®

TestCustomEvent

15/ 255

Manual eCPM ($ USD) @

uss$ 2|

@ Enter a manual eCPM for this custom event. The eCPM determines
the order of the ad source to serve ads.

Cancel Continue

7. Select an existing mapping to use for this custom event or click Add mapping to set up a new
mapping. To use multiple custom events, you'll have to create an additional mapping for each custom

https://support.google.com/admob/answer/13395411#manage

event.

Map ad units: Test Custom Event

Map your ad units to this custom event. @

AdMob Test Custom Event

o Appstock Internal Test App

i0S Free | i0S Q search
Test Banner /
ca-app-pub-2844566227051243/5501759296 Test Banner

Label: Test Banner
Class Name: AppstockGADMediationAdapter

Parameter: {"placement_id":"4"} l

Add additional mapping

8. Click Done.

Map ad units: Test Custom Event

Map your ad units to this custom event. @

AdMob Test Custom Event
. Appstock Internal Test App Test Banner
i0S)
Free | i0OS Label: Test Banner v

Class Name: AppstockGADMediationAdapter
Parameter: {"placement_id":"4"}

Test Banner
ca-app-pub-2844566227051243/5501759296 J

9. Click Save. The mediation group will be saved.

X Edit mediation group :

Status Ad source Ad unit mapping @ Partnership status @
@ AdMob Network Not required Active
Waterfall @

Add ad source Add custom event t

[0 status Ad source Order (by eCPM) @ Ad unit mapping @ Optimisation status

Not supported

Show rows 1-10f1

[m} @ TestCustomEvent US$2.00 Edit

© 2024 Google Privacy Terms

Native Ads

If you integrate native ads, you should pass the native assets through Google Mobile Ads SDK
(GADAdLoader) to the Appstock Adapter using AppstockGADExtras class in your app code:

Swift

private func loadAd() f{

adLoader = GADAdLoader (
adUnitID: adUnitId,
rootViewController: self,

adTypes: [.native],

options: []

let image AppstockNativeAssetImage (minimumWidth: 200,
minimumHeight: 50, required: true)

image.type = .Main

let icon = AppstockNativeAssetImage (minimumWidth: 20,
minimumHeight: 20, required: true)

icon.type = .Icon

let title = AppstockNativeAssetTitle (length: 90, required: true)
let body = AppstockNativeAssetData (type: .description,

required: true)

let cta = AppstockNativeAssetData (type: .ctatext, required: true)
let sponsored = AppstockNativeAssetData (type: .sponsored,
required: true)

let parameters = AppstockNativeParameters ()

parameters.assets = [title, icon, image, sponsored, body, ctal]

let eventTracker = AppstockNativeEventTracker (

event: .Impression,

methods: [.Image, .js]
)
parameters.eventtrackers = [eventTracker]
parameters.context = .Social
parameters.placementType = .FeedContent
parameters.contextSubType = .Social

Fasiem

4., (Create a

let extras = AppstockGADExtras (nativeParameters: parameters)

let request = GADRequest ()

Load t

adLoader?.load (request)

Objective-C

- (void)loadad {
// 1. Create a GADAdLoader
self.adLoader = [[GADAdLoader alloc] initWithAdUnitID:self.adUnitId
rootViewController:self adTypes:@[GADAdLoaderAdTypeNative]
options:Q@[]];

// 2. Configure the GADAdLoader
self.adLoader.delegate = self;

// 3. Configure the native parameters
AppstockNativeAssetImage *image = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:200
minimumHeight:200
required:true

1i
image.type = AppstockImageAsset.Main;

AppstockNativeAssetImage *icon = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:20
minimumHeight:20
required:true

1
icon.type = AppstockImageAsset.Icon;

AppstockNativeAssetTitle *title = [
[AppstockNativeAssetTitle alloc]
initWithLength:90
required:true

17

AppstockNativeAssetData *body = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetDescription
required:true

17

AppstockNativeAssetData *cta = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetCtatext
required:true

17

AppstockNativeAssetData *sponsored = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetSponsored
required:true

17

AppstockNativeParameters * parameters =
[AppstockNativeParameters new];
parameters.assets = @[title, icon, image, sponsored, body, ctal;

AppstockNativeEventTracker * eventTracker = [
[AppstockNativeEventTracker alloc]
initWithEvent:AppstockEventType.Impression
methods:@[AppstockEventTracking.Image, AppstockEventTracking.js]

17

parameters.eventtrackers = Q@[eventTracker];
parameters.context = AppstockContextType.Social;
parameters.placementType = AppstockPlacementType.FeedContent;
parameters.contextSubType = AppstockContextSubType.Social;

// 4. Create a AppstockGADExtras
AppstockGADExtras * extras = [[AppstockGADExtras alloc]

initWithNativeParameters:parameters];

// 5. Create a GADRequest
GADRequest * request = [GADRequest new];

// 6. Register the AppstockGADExtras

[request registerAdNetworkExtras:extras];

// 7. Load the ad
[self.adLoader loadRequest:request];

Display the ad as described in AdlMob docs:

Swift

func adloader(adLoader: GADAdLoader, didReceive nativeAd: GADNativeAd)

iveAd /iew

admobNativeView.nativeAd = nativeAd

8. Rende

=

titleLabel. text nativeAd.headline
bodyLabel.text = nativeAd.body

mainImageView.setImage (
from: nativeAd.images?.last?.imageURL?.absoluteString,

placeholder: UIImage (systemName: "photo.artframe")

iconView.setImage (
from: nativeAd.icon?.imageURL?.absoluteString,

placeholder: UIImage (systemName: "photo.artframe")

callToActionButton.setTitle (nativeAd.callToAction, for: .normal)
sponsoredLabel.text = nativeAd.advertiser

Objective-C

https://developers.google.com/admob/ios/native/advanced

- (void)adLoader: (GADAdLoader *)adLoader didReceiveNativeAd: (GADNativeAd *)nativeAd
// Set GADNativeAd in GADNativeAdView

self.admobNativeView.nativeAd = nativeAd;

self.titlelabel.text = nativeAd.headline;

self.bodyLabel.text = nativeAd.body;

self.sponsoredLabel.text = nativeAd.advertiser;

[self.mainImageView setImageFromURLString:nativeAd.images.lastObject.imageURL. al
placeholder: [UIImage systemImageNamed:@"photo

[self.iconView setImageFromURLString:nativeAd.icon.imageURL.absoluteString

placeholder: [UIImage systemImageNamed:@"photo
[self.callToActionButton setTitle:nativeAd.callToAction forState:UIControlStatel

Appstock SDK iOS - Mediation - AppLovin

In order to integrate Appstock AppLovin MAX Adapter into your app, add following lines to your Podfile:

pod 'AppstockSDK', '1.1.1'
pod 'AppstockAppLovinMAXAdapter', 'l1.1.1'

To integrate the Appstock SDK into your AppLovin monetization stack, you should enable a Appstock SDK
ad network and add it to the respective ad units.

1. In the MAX Dashboard, select MAX > Mediation > Manage > Networks.

éfpl‘w'n, pDiscovery
M ax

Mediation

Performance

User Activity
Advanced Reporting
ALX Reporting
Cohorts

ATT Consent

A/B Tests

Global SKA Report

Ad Units /

Test Mode
Ad Unit Manager
REF

Network Comparison

2. Click Click here to add a Custom Network at the bottom of the page. The Create Custom

https://dash.applovin.com/o/mediation/networks/

Network page appears.
3. Add the information about your custom network:
« Network Type : Choose SDK.
o Name : Appstock.

« iOS Adapter Class Name : AppstockAppLovinAdapter

>

VK Ad Network 1ghn. = Connect
® Verve Group - mg .= Connect
020 Yandex mg .= Connect

iMobile 1g = Connect

Click here to add another instance of an existing network for reporting

Click here to add a Custom Network 4™

Manage Network

Network Type

O sox

Custom Network NaV

TestNetwork

iOS Adapter Class Name /

AppstockAppLovinAdapter

Android / Fire OS Adapter Class Name

4. Open MAX > Mediation > Manage > Ad Units in the MAX dashboard.

https://dash.applovin.com/o/mediation/ad_units/

C AppDiscovery

MAX
Mo

Mediation

Performance

User Activity
Advanced Reporting
ALX Reporting
Cohorts

ATT Consent

A/B Tests

Global SKA Repo

Networks

Test Mode

Ad Unit Manager

Network Comparison
5. Search and select an ad unit for which you want to add the custom SDK network that you created in
the previous step.

S =

| Al Active

Application Ad Unit Ad Unit ID AdType 7d Earnings Status

6. Select which custom network you want to enable and enter the information for each placement. Refer

to the network documentation to see what values you need to set for the App ID, Placement ID, and

Custom Parameters.

@ Custom Network (SDK) - TestNetwork

() Status
_/

App ID (optional)

PlacemV

5 {"placement_id":"5"} 2

Add New Placement ID

Custom Parameters CPM Price /Counlry Targeting

Include All

Typically, the custom parameters field should contain a JSON that contains IDs (placement ID, endpoint

ID) that will be used to load ads.
Parameters:
« placement_id - unique identifier generated on the platform’s Ul;

« endpoint_id - unique identifier generated on the platform’s Ul;

o sizes - array of the ad sizes. You can specify width in w field and heightin h field. Make sure

you’ve provided both width and height values;

« ad_formats - array of the ad formats. You can pass only banner and video ad formats. Other
values will be ignored. Note that the multiformat request is supported only for interstitial ads.

Example:

"placement id": %47,

"sizes": [

"ad formats": ["video"]

"endpoint id": "1",

"sizes": [

L
WUl

.

LU
WUl

.,

"ad formats": ["banner"]

7. Save ad unit.

Native Ads

If you integrate native ads, you should pass the native assets through AppLovin MAX SDK
(MANativeAdLoader) to the Appstock Adapter using AppstockAppLovinExtras class in your
app code:

Swift

let image = AppstockNativeAssetImage (minimumWidth: 200,

minimumHeight: 50, required: true)

image.type = .Main

let icon = AppstockNativeAssetImage (minimumWidth: 20,
minimumHeight: 20, required: true)

icon.type = .Icon

let title = AppstockNativeAssetTitle (length: 90, required: true)
let body = AppstockNativeAssetData (type: .description,

required: true)

let cta = AppstockNativeAssetData (type: .ctatext,

required: true)

let sponsored = AppstockNativeAssetData (type: .sponsored,
required: true)

let parameters = AppstockNativeParameters ()
parameters.assets = [title, icon, image, sponsored, body, cta]

let eventTracker = AppstockNativeEventTracker (

event: .Impression,

methods: [.Image, .js]
)
parameters.eventtrackers = [eventTracker]
parameters.context = .Social
parameters.placementType = .FeedContent
parameters.contextSubType = .Social

let extras =

nativeAdLoader.setLocalExtraParameterForKey (

AppstockAppLovinExtras.key, value: extras)
/ 6. Load the ad
nativeAdLoader.loadAd (into: maNativeAdView)
Objective-C

- (void) loadAd {
// 1. Create a MANativeAdLoader

S e R R RV E R RO e

SELll.lldlLlvVveAUuLUdUESL — | [MANALLVEAULUAUSL dlliul]

initWithAdUnitIdentifier:self.adUnitId];

// 2. Configure the MANativeAdLoader

self.nativeAdLoader.nativeAdDelegate = self;

// 3. Configure the native parameters
AppstockNativeAssetImage *image = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:200
minimumHeight:200
required:true

17
image.type = AppstockImageAsset.Main;

AppstockNativeAssetImage *icon = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:20
minimumHeight:20
required:true

17
icon.type = AppstockImageAsset.Icon;

AppstockNativeAssetTitle *title = [
[AppstockNativeAssetTitle alloc]
initWithLength:90
required:true

1

AppstockNativeAssetData *body = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetDescription
required:true

1

AppstockNativeAssetData *cta = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetCtatext
required:true

1

AppstockNativeAssetData *sponsored = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetSponsored
required:true

1

AppstockNativeParameters * parameters =
[AppstockNativeParameters new];
parameters.assets = @[title, icon, image, sponsored, body, ctal;

AppstockNativeEventTracker * eventTracker = [
[AppstockNativeEventTracker alloc]
initWithEvent:AppstockEventType.Impression
methods: @ [AppstockEventTracking.Image, AppstockEventTracking.js]

1

parameters.eventtrackers = @[eventTracker];
parameters.context = AppstockContextType.Social;
parameters.placementType = AppstockPlacementType.FeedContent;
parameters.contextSubType = AppstockContextSubType.Social;

// 4. Create a AppstockAppLovinExtras
AppstockAppLovinExtras * extras = [[AppstockApplovinExtras alloc]

initWithNativeParameters: parameters];

// 5. Set local extra parameter
[self.nativeAdLoader

setLocalExtraParameterForKey:AppstockAppLovinExtras.key value:extras];

// 6. Load the ad
[self.nativeAdLoader loadAdIntoAdView:self.maNativeAdView];

Make sure you’ve bound the subviews using unique tag IDs with an instance of
MANativeAdViewBinder as describedin AppLovin MAX docs:

Swift

let binder = MANativeAdViewBinder { builder in

builder.iconImageViewTag = 1
builder.titlelLabelTag = 2
builder.bodyLabelTag = 3
builder.advertiserLabelTag = 4

builder.callToActionButtonTag = 5
maNativeAdView.bindViews (with: binder)

Objective-C

MANativeAdViewBinder * binder = [
[MANativeAdViewBinder alloc]
initWithBuilderBlock: " (MANativeAdViewBinderBuilder * Nonnull builder) {
builder.iconImageViewTag = 1;
builder.titlelLabelTag = 2;
builder.bodyLabelTag = 3;
builder.advertiserLabelTag = 4;
builder.callToActionButtonTag = 5;

17

[self.maNativeAdView bindViewsWithAdViewBinder:binder];

Appstock SDK iOS - Mediation - TopOn

In order to integrate Appstock TopOn Adapter into your app, add the following lines to your Podfile:

pod 'AppstockSDK', 'l.1.1'
pod 'AppstockTopOnAdapter', '1.1.1'

To integrate the Appstock SDK into your TopOn monetization stack, you should create an ad network and
add it to the respective ad units.

1. Register an account at toponad.com.

2. Create an app in TopOn dashborad. Select [Application > Add app].

https://developers.applovin.com/en/ios/ad-formats/native-ads/#:~:text=Ad%20Unit%20screen%253A-,Bind%20UI%20Components,-You%20can%20bind
https://www.toponad.com/en
https://portal.toponad.com/m/app

Qtop <= Application [Feature tips

(D Performance .
App List Add App v Edit

«% Application

Ar
P Ad Format : Placement :

@ Mediation

Eb Report v

Placement

[Network

4> Advanced v

& TopOn ADX v

,% My Account v

Total 4 15/page v
3. Fill the required information fields for your app.
New App X

Platform i0S Android

App Store Yes No

Download URL

App Name Test App 8/100
Category App

Sub-Category Utilities

Bundle ID com.test.app

Orientation Portrait Landscape Auto

Weixin Open Platform

App ID

4. Click Confirm .

New App X

Platform i0OS Android

App Store Yes No

Download URL

© It is recommended that you fill in the Download URL of the
app, otherwise it may affect the ad filling of the Bidding

Ad Network
App Name Test App 8/100
Category App
Sub-Category Utilities
Bundle ID com.test.app

Orientation Portrait Landscape Auto

Weixin Open Platform

App ID

5. Click Add placement .

Q = Application E Feature tips @ SDK Download @ o EeENv O v

App List Add App v o Edit Add Placement v

App

%

Ad Format : Placement : Status :

B B ®

o ® <

6. Select the app. Fill Placement name and Ad Format fields.

New Placement X

App —’ Test App

Placement Name —* Test Banner 11/100

Ad Format —* Banner

Status Running

Note

7. Select Network andclick + Custom Network Firm .

Q top

(@ Performance

A~
!

Monetization [Feature tips

Filter by 2024-09-03 - 2024-09-03 Network :

Ogo Application

@ Mediation + Network Account + Custom Network Firm /

EI] Report v Network Integration Type Account Operation
@ Network TeqBlaze AD Network SDK Default Export Config AD Source Setting
4> Advanced v
Total 1 15/page v
@ TopOn ADX v
o] v
& My Account

8. Fill Network Firm Name . Fill the adapter’s class name:
o Interstitial - AppstockInterstitialATAdAdapter ;
e Banner- AppstockBannerATAdAdapter ;

e Native - AppstockNativeATAdAdapter .

Add Custom Network Firm X

Native

Splash

ioS

RV

Interstitial Appstockinterstitia ATAdAdapter

Banner AppstockBannerATAdAdapter

Native AppstockNativeATAdAdapter

Splash

Icon

How to find the parameters ? Cancel

9. Click Confirm .

Add Custom Network Firm X

Native

Splash

ioS

RV

Interstitial Appstockinterstitia ATAdAdapter

Banner AppstockBannerATAdAdapter

Native AppstockNativeATAdAdapter

Splash

Bidding For Each

Load Opened Closed

Icon

How to find the parameters ? Cancel Confirm

10. Openthe Mediation tab, select the app and placement, click Add AD source .

3

@ top < Mediation B Feature tos 1\ \ @ SDK Download o]

@ Performance

1 Filterby ~ 2024-09-07 - 2024-09-07 App: & Test App Placement : Test Banner
4
% Application
Add Segment gu
@ Mediation
You can create a waterfall by clicking on copy ad source .
ebaaball ~uto Refresh: 15 Second Parallel request number: 2 Area Network : A
Eb Report ~
Priority Ad Source Status Operation Price Estimate eCPM eCPM APl Estimate Revenue Estimate Revenu Proportion Attempts/Bids Request Fllirate
@ Network
Total 0 AD Sources Activated - - - - $0 $0 - - 0 -
4> Advanced v
€ TopOn ADX. Edit Bidding - - - - - - -
@ TopOn ADX v a
Inactive(0 AD Sources) UnFold v
& My Account v

11. Find the needed network. Add Ad source name and Price .Fillthe Custom Parameters
Custom parameters should contain a valid JSON with IDs (placement ID, endpoint ID) values that will
be used by the adapter to load ads. Click Confirm .

Add Ad Source 4 X

/

Test Segment Default
~ Test Network User Name Default
Ad Source Name Test Network_banner_1 @_ 2 21/50

Header Bidding Yes

Price($) 1.00 3

Other Parameters {"placement_id":"4"} é— 4

SDK Json {"placement_id":"4"}

How to find the parameters ?

Bottom Ad

More Config v

Native Ads

If you integrate native ads, you should pass the native assets through extras to the Appstock Adapter using
kAppstockNativeAssets key in your app code:

Swift

private func loadAd() {

1. gure the native par

let image = AppstockNativeAssetImage (minimumWidth: 200, minimumHeight: 50, requ

image.type = .Main

let icon = AppstockNativeAssetImage (minimumWidth: 20, minimumHeight: 20, requir

icon.type = .Icon

let title = AppstockNativeAssetTitle (length: 90, required: true)

let body = AppstockNativeAssetData (type: .description, required: true)
let cta = AppstockNativeAssetData (type: .ctatext, required: true)

let sponsored = AppstockNativeAssetData (type: .sponsored, required: true)

let parameters = AppstockNativeParameters ()
parameters.assets = [title, icon, image, sponsored, body, cta]

let eventTracker = AppstockNativeEventTracker (

event: .Impression,

methods: [.Image, .js]
)
parameters.eventtrackers = [eventTracker]
parameters.context = .Social
parameters.placementType = .FeedContent
parameters.contextSubType = .Social

let extra = |
kAppstockNativeAssets: parameters

Load the ad

ATAdManager.shared () .loadAD (

withPlacementID: placementID,
extra: extra,
delegate: self

Objective-C

- (void)loadad {
// 1. Configure the native parameters
AppstockNativeAssetImage *image = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:200
minimumHeight:200
required:true

17
image.type = AppstockImageAsset.Main;

AppstockNativeAssetImage *icon = [
[AppstockNativeAssetImage alloc]
initWithMinimumWidth:20
minimumHeight:20
required:true

1

icon.type = AppstockImageAsset.Icon;

AppstockNativeAssetTitle *title = [
[AppstockNativeAssetTitle alloc]
initWithLength:90
required:true

17

AppstockNativeAssetData *body = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetDescription
required:true

17

AppstockNativeAssetData *cta = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetCtatext
required:true

17

AppstockNativeAssetData *sponsored = [
[AppstockNativeAssetData alloc]
initWithType:AppstockDataAssetSponsored
required:true

17

AppstockNativeParameters * parameters = [AppstockNativeParameters new];

parameters.assets = @[title, icon, image, sponsored, body, ctal;

AppstockNativeEventTracker * eventTracker = [
[AppstockNativeEventTracker alloc]
initWithEvent:AppstockEventType.Impression
methods:@[AppstockEventTracking.Image, AppstockEventTracking.js]

17

parameters.eventtrackers = @[eventTracker];
parameters.context = AppstockContextType.Social;
parameters.placementType = AppstockPlacementType.FeedContent;
parameters.contextSubType = AppstockContextSubType.Social;

// 2. Set up the extras

NSDictionary *extra = @{
kAppstockNativeAssets : parameters

i

// 3. Load the ad
[[ATAdManager sharedManager] loadADWithPlacementID:self.placementID

extra:extra

delegate:self];

Appstock SDK iOS - Mediation - ironSource

In order to integrate Appstock ironSource Adapter into your app, add the following lines to your Podfile:

pod 'AppstockSDK', 'l1.1.1'
pod 'AppstockIronSourceAdapter', 'l1.1.1'

To integrate the Appstock SDK into your ironSource monetization stack, you should create an ad network
and add it to the respective ad units.

1. Sign in to your IronSource account.

https://platform.ironsrc.com

2. Click Apps in the sidebar (LevelPlay -> Apps). Then click Add app .

1 .
Q! Unity LevelPlay Apps

83 Apps + Visibility: Shown @ | Status | (Platform 3 /
Mediation 2)
@ Important! to receive revenue, you must first enter your payment preferences and company info
1l Reports v
Performance @ Your account is pending approval. We'll notify you by email when your account is approved.

User activity
Real time pivot (7 Displaying 1 out of 1apps Q search by app
Cohorts
Report generator App name Status Active ad units 528 reward callback
Activity logs ,
o Management v - Temp N
Mediation
Segments
AlB
3 Setup v
Ad units
Placements
SDK networks
Unity Ads (7
Direct deals (7
Testing

Offerwall

3. Fill app details and click Add app.

Enter App Details

Live app

(® App Not Live in the Application Store

That's ok, we will ask you to verify the application store info before you start monetizing with live ads

Temporary Name Test App

Platform ® @& ios & Android

Setup Configurations

® New Setup

Duplicate setup from another application

ironSource network

COPPA

(® This is a general audience app that is not directed to children
This app is partially directed to children (a "mixed audience" app)

This app is primarily directed to children

U.S. state privacy laws €

(® Do not restrict the use of user data
There will be no change to the way ironSource network serves ads to eligible users in California, Connecticut,
Colorado, Virginia and Utah. You can selectively communicate “do not sell” settings per user when sale or sharing of

that end user’s personal information is not permitted through the ironSource SDK dedicated API. Learn how »

Apply “do not sell” settings to all users

<X Back to Apps Add App

4. Click SDK networks in the sidebar (LevelPlay -> Setup -> SDK networks). Click Manage networks
and Custom Adapter.

! Unity LevelPlay SDK Networks Setup
1

88 Apps < & Your account is pending approval. We'll notify you by email when your account is approved.
Mediation & 3
Available Networks 2/26 Vianage Networks ~ X
Il Reports M
Performance e
@ ironsource A\ ApPLOVIN + aps + $3BidMachine + ChartboostZ +

User activity
Real time pivot (7 4. CS) + @ oirectoeals + CDTExchange + Googleadmsnager + QYGoogleAdMob + hyprMX +
Cohorts § -
InMosi + Dliftoff + DImae + OQMeta + Mintegral + Gloroco +
Report generator

Activity logs @ vkAdNetwork + _afiy. Pangle + smaatd® + SueeR + Tapjoy + Tencent +

= Management v

1 Unity Ads + Yandex Ads + CustomAdapter +<Qummm—— g

Mediation

Segments

AlB

3 Setup v

2

Ad units

Placements /

SDK networks

Unity Ads (7

Direct deals (7

Testing

Offerwall

5. Enter the network key 15c03£8f1 and click Save.

Custom Adapter X

Network Key 15c03f8f1 Enter Key —

Cancel

6. Fill your partnerKey for the Appstock platform and click Save.

Custom Adapter

Network Name Appstock

partnerKey appstock-demo

Reported Revenue

@ Rate based revenue « Revenue will be reported based on the rate you set

O Reporting API « Revenue will be reported based on the network’s reporting API

Cancel Save

7. Click Setup in the available networks list.

SDK Networks Setup
& Your account is pending approval. We'll notify you by email when your account is approved.

Available Networks 2/26 \anage Networks»

APPLICATIONS (2) Q Test App
[
BIDDING
Test App
;. i0S (No Networks)
s » @ ironsource B @ 0 4
GUSTOM /
& Appstock B @ B Setup
CALLBACKS

To enable Callbacks go to: Apps » set 525 callback

8. Create network instances for all placements you have in the Appstock platform. Fill placementid,
Mediation Groups and Rate for desired type of the ad. Click Save.

App Settings

Test App

& ios & Appstock

B Rewarded Video @ Interstitial E] Banner

placementid 4

Mediation Groups All Countries v

Rate (Optional) @ $ 10

+ Add Network Instance (Up to 10 max.)

Appstock SDK iOS - Utils

AppstockAdinfo

The AppstockAdInfo class serves as a container for metadata related to bidding, such as the bid

price.

Property

price

Type

NSNumber?

Description

Bid price expressed as CPM
although the actual transaction is
for a unit impression only. Note that
while the type indicates float,
integer math is highly
recommended when handling
currencies.

	Appstock SDK iOS - Overview
	Integration and configuration

	Appstock SDK iOS - Integration
	Cocoapods
	Direct download
	SDK Initialization

	Appstock SDK iOS - Banner
	Appstock SDK iOS - Interstitial
	Rendering Controls

	Appstock SDK iOS - Rewarded
	Rendering Controls

	Appstock SDK iOS - Native
	Appstock SDK iOS - SDK Parametrization
	Configuration via AppstockTargeting class
	Configuration via Appstock class

	Appstock SDK iOS - Consent Management
	Appstock SDK iOS - Mediation - AdMob
	Native Ads

	Appstock SDK iOS - Mediation - AppLovin
	Native Ads

	Appstock SDK iOS - Mediation - TopOn
	Native Ads

	Appstock SDK iOS - Mediation - ironSource
	Appstock SDK iOS - Utils
	AppstockAdInfo

